차원축소 / PCA(주성분 분석)
·
머신러닝
차원 축소 차원 축소는 많은 피처로 구성된 다차원 데이터 셋의 차원을 축소해 새로운 차원의 데이터 셋을 생성하는 것이다. 일반적으로 차원이 증가할수록 데이터 포인트 간의 거리가 기하급수적으로 멀어지게 되고, 희소(sparse)한 구조를 가지게 된다. 수백 개 이상의 피처로 구성된 데이터 셋읭 경우 상대적으로 적은 차원에서 학습된 모델보다 에측 신뢰도가 떨어진다. 또한 피처가 많은 경우 개별 피처 간의 상관관계가 높을 가능성이 크다. 선형 회귀와 같은 선형 모델에서는 입력 변수 간의 상관관계가 높을 경우 이로 인한 다중 공선성 문제로 모델의 예측 성능이 떨어진다. 다중공선성 : 일부 변수가 다른 변수와 상관도가 높아, 데이터 분석 시 부정적인 영향을 미치는 현상 수십개 이상의 피처가 있는 데이터의 경우 이..