코딩야학 - 데이터 전처리, 효율높은 모델링
·
데이터 분석/코딩야학
판다스를 이용한 간단한 데이터 전처리 변수(칼럼) 데이터 확인 : 데이터.dtypes 변수를 범주형으로 변경 데이터['칼럼명'].astype('category') 변수를 수치형으로 변경 데이터['칼럼명'].astype('int') 데이터['칼럼명'].asfloat('float') NA 값의 처리 NA 갯수 체크 : 데이터.isna().sum() na 값 채우기 : 데이터['칼럼명'].fillna(특정숫자) # 라이브러리 사용 import pandas as pd # 파일 읽어오기 파일경로 = 'https://raw.githubusercontent.com/blackdew/tensorflow1/maste..
코딩야학 - 히든레이어
·
데이터 분석/코딩야학
히든 레이어 기존의 입력 부분과 출력 부분사이에 퍼셉트론을 이어주면 딥러닝이 깊어진다고 하는데, 그 추가된 퍼셉트론을 숨겨진 층 , 즉 히든 레이어 라고 한다 . 처음 인풋 데이터에서 총 5개의 퍼셉트론을 통해 히든레이어를 구성한다. 히든레이어 에서는 하나의 퍼셉트론으로 output Layer를 도출 할 수 있다. 히든레이어 구조를 생성하는 코드는 다음과 같다. 3개의 히든레이어를 만들고 싶으면 다음과 같이 코딩할 수 있다. 이렇게 하면 그전의 모델보다 더 똑똑한 모델을 학습할 수 있다. 보스턴 집값 예측 ########################## # 라이브러리 사용 import tensorflow as tf import pandas as pd # 1.과거의 데이터를 준비합니다. 파일경로 = &#3..
코딩야학 - 아이리스 품종 분류
·
데이터 분석/코딩야학
아이리스 데이터를 살펴보면 꽃잎과 꽃받침의 데이터를 가지고 품종을 예측하는 것이다. 이전에 예측했던 예제의 종속변수는 양적 데이터 였지만 아이리스 데이터의 종속 변수는 범주형 데이터 타입이다. 앞의 회귀와 어떤 차이가 있는지 코드로 살펴 보자. #1.과거의 데이터를 준비합니다. 부분에서는 회귀에서 못보던 get_dummies 코드가 추가된 것을 알 수있다. #2. 모델의 구조를 만듭니다. 부분에서는 종속변수의 갯수가 3개이고 activation 부분과 loss 부분이 달라진것을 알 수 있습니다 . 코드에 대해 알아 보기 전에 원-핫 인코딩에 대해 알아 봅시다. 원핫인코딩 범주형 자료는 수식으로 표현 할 수 없기 때문에 딥러닝 모델을 사용할 수없다. 원핫인코딩은 범주형 데이터를 1과 0의 데이터 바꿔주는 ..
코딩야학-딥러닝 1
·
데이터 분석/코딩야학
위 지도는 머신러닝으로 해결 할 수 있는 많은 문제들을 보여줍니다. 이 수업에서 텐서플로우를 이용해서 해결하려는 문제는 지도학습의 회귀와 분류입니다. 회귀는 숫자로 된 결과를 예측하는 것이고, 분류는 범주형문제의 결과를 예측 하는 것입니다. 회귀와 분류 문제를 해결하기 위해 사용하는 머신러닝 알고리즘에는 DecisionTree,RandomForest,K-NN,support vector machine ,neural network 등이 있다. 이중 이 수업은 Neural Network에 대해 배우는 수업이다. 사람의 두뇌가 동작하는 방법을 모방해서 기계가 학습을 할 수 있게 고안된 것이 Neural Network 알고리즘이다. 우리의 두뇌는 뉴런이라는 세포들이 촘촘하게 연결 되어있다. 뉴런들로 연결된 신경망..
ariz1623
'코딩야학' 태그의 글 목록