DBSCAN
·
머신러닝
DBSCAN DBSCAN은 밀도 기반의 대표적인 알고리즘이다 DBSCAN은 간단하고 직관적인 알고리즘으로 돼있음에도 데이터의 분포가 기하학적으로 복잡하 데이터 셋에도 효과적인 군집화가 가능하다. 다음과같은 형태의 데이터를 군집화 한다고 했을때, k-평균 알고리즘과 DBSCAN 의 결과를 비교해보자. DBSCAN이 효과적인 군집화를 수행하고 있는것을 알 수 있다. DBSCAN은 특정 공간 내에 데이터 밀도 차이를 기반알고리즘으로 하고 있어서 복잡한 기하하적 분포도를 가진 데이터 셋에 대해서도 군집화를 잘 수행한다. DBSCAN을 구성하는 가장 중요한 두 가지 파라미터는 입실론(epsilon) 으로 표기하는 주변영역과 이 입실론 주변 영역에 포함되는 최소 데이터 개수 min points 이다. 입실론 주변 ..
GNM(Gaussian Mixture Model)
·
머신러닝
GNM(Gaussian Mixture Model) GNM 군집화는 군집화를 적용하고자 하는 데이터가 여러 개의 가우시안 분포를 섞어서 생성된 모델로 가정해 수행하는 방식이다. 정규 분포로도 알려진 가우시안 분포는 좌우 대칭형의 종(Bell) 형태를 가진 연속 확률 함수 이다. GNM은 데이터를 여러 개의 가우시안 분포가 섞인 것으로 간주한다. 섞인 데이터 분포에서 개별 유형의 가우시안 분포를 추출한다. 먼저 아래 사진처럼 세 개의 가우시안 불포를 합치면 다음과 같은 형태가 될 것이다. ( 파란색 선 : 개별 가우시안 분포, 빨간색선 : 합친 가우시안 분포 ) 군집화를 수행하려는 실제 데이터 셋의 데이터 분포도가 다음과 같다면 쉽게 이 데이터 셋이 정규 분포 A, B, C를 합쳐서 된 데이터 분포도임을 알..
평균이동(Mean Shift)
·
머신러닝
Mean Shift 평균 이동(Mean Shift)는 K-평균과 유사하게 중심을 군집의 중심으로 지속적으로 움직이면서 군집화를 수행한다. 하지만 K-평균이 중심에 소속된 데이터의 평균 거리 중심으로 이동하는 데 반해, Mean Shift는 중심을 데이터가 모여 있는 밀도가 가장 높은 곳으로 이동시킨다. 다음 그림에서 볼 수 있듯이 평균 이동 알고리즘은 특정 대역폭을 가지고 최초의 확률 밀도 중심 내에서 데이터의 확률 밀도 중심이 더 높은 곳으로 중심을 이동한다. 평균 이동은 데이터의 분포도를 이용해 군집 중심점을 찾는다. 군집 중심점은 데이터 포인트가 모여 있는 곳이라는 생각에서 착안한 것이며 이를 위해 확률 밀도 함수(P.D.F)를 이용한다. 가장 집중적으로 데이터가 모여있어 확률 밀도 함수가 피크인 ..
군집화 - K-Means
·
머신러닝
군집화 K-means 알고리즘 K-means는 군집화에서 가장 일반적으로 사용되는 알고리즘이다. K-means는 군집 중심점이라는 특정한 임의의 지점을 선택해 해당 중심에 가장 가까운 포인트들을 선택하는 군집화 기법이다. 군집 중심점은 선택된 포인트의 평균 지점으로 이동하고 이동된 중심점에서 다시 가까운 포인트를 선택, 다시 중심점을 평균 지점으로 이동하는 프로세스를 반복적으로 수행한다. 모든 데이터 포인트에서 더 이상 중심점의 이동이 없을 경우 반복을 멈추고 해당 중심점에 속하는 데이터 포인트들을 군집화 하는 기법이다. 다음 그림에서 K-means가 어떻게 동작하는지 살펴보자. K-means 의 특징 일반적인 군집화에서 가장많이 활용 되는 알고리즘 알고리즘이 쉽고 간결. 거리 기반 알고리즘으로 속성의 ..
ariz1623
'군집화' 태그의 글 목록